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Abstract: To achieve interpretable machine intelligence surpassing human cognitive levels 

and realize the ultimate objective of co-evolutionary human-computer interactions, this article 

analyzed various related aspects such as the human-computer interaction process, knowledge 

base construction, visual programming tool development, and thinking operating system 

design. This article proposed a method for simulating human thinking processes by computer: 

Firstly, it clarified the route by starting from the “teaching and learning” mode, which was the 

human-computer interaction computing mode, enabling the gradual accumulation of 

knowledge and data, and established the thinking knowledge base. Secondly, it established 

human thinking simulation mechanisms on the thinking operation system, including state 

perception, common sense judgment, error rollback, static logic structure analysis for the 

programs, and dynamic execution path analysis. Thirdly, it discussed the computer 

implementation methods of the thinking operation system and applications in detail, using 

mechanisms such as autonomous enumeration and rule induction of input data features, 

common sense judgment rollback, automatic error self-healing, online self-programming, and 

system adaptation (generalized pattern matching); all the above mechanisms were commonly 

used in human thinking. Finally, it summarized the whole article, and the future research 

directions were proposed by the authors. 

Keywords: interpretable artificial intelligence; human cognition; human-computer interaction; 

thinking operating system; thinking simulation; thinking knowledge base 

1. Introduction 

Natural language semantic understanding [1–3] was an important foundation for 

machine thinking. The semantic expression forms of natural language are diverse and 

complex. In the process of analyzing the corpus, it was necessary to face practical 

challenges such as sparse language features [4], scattered acquisition for semantic 

expression forms, and long accumulation cycles for “smarter” computing models [5]. 

Traditional software development methods [6–8], in situations where semantic feature 

processing requirements could not be clearly defined, made rapid increases in the cost 

and complexity of processing, maintaining, and upgrading complex logic algorithms 

while the algorithms scaled up [9,10]. Using instances to gradually accumulate 

experience was the necessary way to implement the complex logic of intelligent 

systems [11]. To avoid frequent and large-scale logic changes in software 

development, it was necessary to design the software evolution model with simple 

CITATION 

Zhu P, Lv P, Zou W, et al. Resources 

management and execution 

mechanisms for thinking operating 

system. AI Insights. 2025; 1(1): 

1973. 

https://doi.org/10.59400/aii1973 

ARTICLE INFO 

Received: 17 January 2025 

Accepted: 26 March 2025 

Available online: 1 April 2025 

COPYRIGHT 

 
Copyright © 2025 by author(s). 

AI Insights is published by Sin-Chn 

Scientific Press Pte. Ltd. This work is 

licensed under the Creative 

Commons Attribution (CC BY) 

license. 

https://creativecommons.org/licenses/

by/4.0/ 



AI Insights 2025, 1(1), 1973. 
 

2 

computing architecture, a machine adaptive framework, a self-learning mechanism, 

common sense judgment, and an abnormal self-healing ability [12–15]. 

The large language model based on deep learning [16–18] met the above 

requirements. After the neural network scale was determined, massive corpus training 

was carried out, and the obtained large language model could respond to external 

stimuli based on probability, achieving “intelligence emergence” [19–23]. However, 

the performances of large language models in reasoning interpretability [24–26], real-

time data retrieval, implicit semantic reasoning, and numerical value inequality 

deduction were still at the intelligence level of “preschoolers” [27–29]. Although 

scholars had made improvements through technologies such as the thought chain, their 

performances were still unsatisfactory due to the constraints of the core technology 

route, and the non-interpretability of the system responses also posed safety and ethical 

concerns. 

Traditional logic-based methods naturally had interpretability in reasoning; 

however, they did not have the advantages of simple architecture, machine adaptation, 

self-learning, commonsense judgment, and error self-healing ability as the large-scale 

neural computing [30–34]. Currently, logic-based methods are not the mainstream 

direction of general artificial intelligence; however, the authors believed that through 

improvements in software engineering methods, global semantic analysis, and human 

thinking mechanism simulation, the logic-based methods will take on the 

responsibility for surpassing the intelligence level of the humans and harmoniously 

interacting with humans to evolve together [35,36]. These improvements were the 

applications of software development ideas like the low-code platforms [37], 

perceiving natural language analysis features and processing methods, enhancing 

visual programming capabilities, reducing the development and maintenance costs of 

complex logic algorithms, etc. These methods were not mainly targeted at specific 

industries as the currently popular low-code platforms [38], but rather the general basic 

programming platform for complex logic algorithms [39–41]; Different from 

Microsoft C++’s MFC toolkit for GUI and the widely used Qt toolkit, the new basic 

programming platform could not only be applied to GUI development and 

maintenance but also achieve breakthroughs in general logic flow visualization, which 

had significant value for complex logic algorithm maintenance. 

2. Related work 

Since OpenAI released GPT-3.5 at the end of 2022, the application scenarios of 

generative artificial intelligence continued to be expanded, and large language 

modeling technology had become popular worldwide. In the debate on human thinking 

simulation between the neural network and the logic rule (symbolic intelligence) in 

the field of artificial intelligence, the neural network had temporarily gained a decisive 

advantage and become the mainstream technological direction. However, this article 

argued that the execution process of symbolic intelligence systems was closer to 

human thinking and reasoning; the execution mechanism belonged to the “white box” 

category, and its operation mechanism could be explained and traced in engineering; 

there were no safety and ethical problems, and the operation mechanism could interact 

with humans at any time to achieve co-evolution.  
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The simulation of human thinking could be divided into three steps: external 

input semantic understanding, comprehensive thinking mechanism implementation, 

and super large-scale knowledge engineering system construction [42]. Inspired by 

large language models’ full space language input processing capabilities [43], text 

semantic understanding [44] could be achieved through massive clause pattern 

matching and global semantic inheritance and overloading techniques [45]. The 

comprehensive thinking mechanism realized mathematical calculations, deduction, 

unequal and equivalent relation deduction, proportional deduction, induction, equation 

resolving, etc. Among them, as an important way of creative thinking [46], the 

hypothesis could be proposed by induction [47], which could be incorporated into the 

knowledge base [48] for unified management and access after it was verified by 

subsequent samples. In restricted domains, thinking actions included but were not 

limited to mathematic actions such as addition, subtraction, multiplication, division, 

set building, number axis analysis, coordinate analysis, accumulation, counting, as 

well as process control actions such as backtracking, looping, recursion, enumeration, 

equation resolving, assumptions, induction, etc. Together, they were converted into an 

industry application framework like the low-code platform [49], with the ability to 

fully integrate domain thinking actions. In general, all thinking processes could be 

completed by combining the elements of the thinking action set, and some temporarily 

requiring highly intelligent thinking actions could be obtained by human-computer 

interaction [50] and negotiation. In this article, the functions were encapsulated by the 

frameworks, which were more like the function “shell” with contexts. Due to thinking 

actions could also be encapsulated by frameworks, the framework could provide data 

records of action (function) inputs, outputs, and states. The system could achieve 

visual programming [51] capability by this encapsulation approach [52]. Unlike 

popular visual programming methods such as Microsoft MFC and Qt components, this 

article used software static structure and dynamic execution path tracking to help 

programmers understand the workflow of the software system. The thinking operating 

system [53] could be constructed for machines, where all thinking actions were 

scheduled, executed, monitored, maintained, upgraded, rolled back, or abandoned on 

this platform, forming the support platform (or integrated development environment) 

for software development, debugging, and maintenance of complex intelligent 

applications. 

This integrated development environment [54] could be used to develop complex 

logic algorithms with “automatic”, “self-healing”, “online”, and “self-programming” 

features. “Automatic” referred to the intelligence and autonomy of the system’s 

analysis and processing, “self-healing” referred to the system’s error self-recovery, 

“online” referred to the system updating without interrupting software execution, and 

“self-programming” referred to the ability to plan, predict, execute, verify, and 

rollback action sequences. From the current research progress at home and abroad, 

necessary human-computer interaction [55] was one of the important capabilities for 

interpretable systems to achieve human-machine co-evolution and improvement. For 

example, there were various types of data input modes, and the pattern reference 

function based on instance analysis often could not select the optimal thinking action 

due to sparse input data pattern features; On the other hand, the generalization method 

[56] of the input data pattern by the system was another important ability that the 
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thinking operating system must possess; all of these required the system to have the 

ability to propose inductive hypotheses with a small number of use cases and then 

verify and confirm the hypotheses through human-computer interaction. To solve 

problems based on understanding, planning, thinking, and action sequences, the 

systematic semantic feature vocabulary system that represented action semantics was 

needed. Building such a feature vocabulary system was an extremely difficult task, 

and there was currently no related work that could be retrieved in this area. It could 

only rely on the author’s accumulated experience in humanoid machines resolving 

elementary mathematic application problems [57–60], continuously processed and 

accumulated examples, gradually improved and upgraded, and ultimately achieved 

this design target. 

3. System architecture 

The system architecture design is based on the five assumptions as follows: 

(1) The basic data structures have been determined, and appropriate expansion slots 

have been reserved previously. 

(2) The quantity of all language feature recognition functions with the basic data 

structures is limited. 

(3) The system workflows are all composed of known thinking actions. 

(4) The quantities of other features, such as static data structure features, and 

dynamic action history features are also limited. 

(5) In addition to a few thinking actions that require human experts to add to the 

system interactively, whether modifying data structures or performing other 

thinking actions, are all planned, executed, and validated by machines 

automatically (as shown in Figure 1). 

 

Figure 1. Computing model. 
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3.1. Computing model 

At present, thinking machines are still in the research and development stage with 

the “human teaching and machine learning” mode, and the autonomous interaction 

and self-learning for thinking machines are still laid in the initial conceptual 

demonstration process. All thinking processes are based on a defined sequence of 

thinking actions (condition modules and action modules). Thinking action sequence, 

which can display the static logic structure, dynamic execution sequence, and system 

state in a limited field, runs on top of the thinking operation system, as well as rollback 

and traversal. The machine learning process is also based on the thinking operating 

system, and the learning and supervision processes are also completed by pre-set 

thinking actions (except for a few new action modules). 

Thinking machines required humans to initialize the conditions, actions, and 

basic process sets, as well as the operation mechanism of the thinking operating system 

to maintain and call these preset modules and processes. In the process of problem-

solving, the expected solution, steps, and results of the problem could also be used as 

verification information for interactive input into the thinking operating system. When 

the problem could not be solved correctly, the preset modules and processes could also 

be modified or supplemented through the human-computer interaction interface. 

3.2. Thinking workflows 

The basic workflows of the thinking machine were as follows: firstly, it 

performed the analysis and processing action based on preset modules and actions, 

then perceived the state changes of the thinking machine, judged the step results based 

on common sense, and determined whether the stage nodes had achieved the expected 

goals. Based on these thinking mechanisms, the preset knowledge base could be 

upgraded, and human intervention could be sought through a human-computer 

interaction interface. It was also possible to check whether the problem had been 

solved, propose new hypotheses, plan the next thinking action, and then loop through 

the next choice thinking action. Until the problem was solved and the results and 

thinking steps of the solution were output. Among them, system state perception 

included the recognition of preset knowledge features/attributes, input data 

information features/attributes, and the action-executing sequence. 

The concept of the thinking operating system was based on the premise of pre-

set modules, supplemented by human-computer interaction. Only in this way can we 

achieve the goals of machines autonomously, independently thinking, and self-healing 

from errors. Of course, these goals could be gradually achieved through human-

computer interaction. 

3.3. Thinking actions executing environment 

Similar to “toddler”, which always inherited the genes of their parents, the basic 

framework of self-supervised learning for thinking machines was determined by the 

accumulation and summary of previous case analysis experience. During the thinking 

process, the system perceived the features of data processing, logic functions, and 

workflow (static/dynamic), which constructed language feature knowledge pattern 

hypotheses based on these features. After machine cross-validation, self-supervised 
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validation, new knowledge was formed. This progressive supervised learning method 

with an initial knowledge set might require human experts to add data structure 

elements, feature recognition functions, and action workflows to form an action 

execution environment constrained by limited operating space in the thinking machine 

operating system (as shown in Figure 2). 

 

Figure 2. Thinking actions executing environment. 

The preset thinking knowledge base usually included thinking auxiliary 

knowledge such as action execution conditions, action bodies, and various thinking 

modes, which provided an initial framework plan for the thinking action execution. In 

the actual running process of the thinking operation system, it was continuously 

supplemented, improved, abandoned, and backtracked. With a dynamic queue 

structure that connected the beginning and ending, the action execution plan was 

proposed and verified step by step, achieving the iterative loop of continuous thinking 

without termination until the problem was solved or the termination execution 

conditions were met. The thinking operating system realized the scheduling and 

matching of various knowledge in the preset thinking knowledge base and planned for 

the execution and verification of operation actions step by step. After natural language 

text input, the thinking operating system perceived the features of the original input 

data, the representation features of intermediate results, as well as the original static 

logic processing workflow structure and dynamic processing action sequence, and 

reflected, evaluated, verified, hypothesized, or backtracked on per action execution 

step. The consistency recognition and checking mechanism of the original static logic 

processing workflow structure, as well as the perception, evaluation, probing, or 

rollback mechanism of the dynamic execution action sequence, were the core 

functions of the thinking operating system. 

This section divided the problem-solving process into interpretable basic thinking 

actions and execution environment, where the execution environment planned, called, 

monitored, judged, and rolled back basic thinking actions, as well as explained how to 

design the execution environment. 
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4. Core functions 

The thinking operating system integrated the commonsense knowledge base, 

domain knowledge base, action condition base, and thinking action base, and had the 

abilities to schedule, execute, monitor system status, evaluate results, and roll back 

thinking actions of the problem-resolving process. On top of the thinking operating 

system, the intelligent module with a closed-loop action queue could be built, which 

had the ability to dynamically plan thinking actions and provided the basic 

development environment for machine thinking’s autonomous, automatic self-

healing, and online self-programming capabilities. 

4.1. Basic concepts 

a) Variable attributes 

To simplify and display the data flow as much as possible, this article suggested 

minimizing the use of local variables (stack) and maximizing the use of global 

variables (heap) for data transfer across functions. The optimization and compression 

for storage space occupied by the software global variables could be achieved with 

specific tools. 

b) Node types 

To explicitly control and display logic functions, the program was represented as 

the network composed of function nodes. All nodes were composed of Boolean-type 

nonparametric functions; the internode connection represented the flow direction of 

the execution location. Usually, node functions could include four basic types, such as 

general nodes, loop (head) nodes, loop (tail) nodes, and recursive nodes. 

c) Rollback mechanism 

All function nodes had the rollback function, which restored the changes made 

by this function node to global variables. Combining a rollback mechanism with 

common sense judgments could achieve dynamic programming of logic processes. 

d) Function pattern 

The function pattern, composed of condition nodes and function node sequences, 

was used for the automatic intelligent construction of software macro workflow. Data 

attribute features and co-relationships could be integrated into the function patterns. 

e) Pattern data attributes and associated features 

Data attributes and associated features were mainly used for the implementation 

condition nodes and logic judgment. Programs could usually be considered as 

consisting of data flows and workflows. The node sequence pattern was composed of 

the data flows and the workflow pattern, and the pure data flows represented the data 

processing and data transmission of function nodes. 

For example, the function nodes could be represented by the framework using the 

following C-like language data structure: 

struct STRUCT_FUNTION_ENTRANCE 

{ 

Boolean (*App)();  

///Function pointer 

Char str_annotation [MAX_ATTRIBUTES_LIST_LEN]; /// The text string 

describing what the current function could do. 
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Boolean bRet;///Function returned the Boolean value. 

}; 

struct STRUCT_GENERAL_FRAME_INTERFACE 

{ 

Long nID;/// Current framework node identifier ID; 

Boolean bInit=false;/// “false” for the first execution of the loop node, “true” for 

all others. 

Int nType;///Divided into recursive nodes, loop head nodes, loop tail nodes, 

general nodes, etc; 

struct STRUCT_GENERAL_FRAME_INTERFACE * pBrother;///Pointed to the 

brother framework node. 

struct STRUCT_GENERAL_FRAME_INTERFACE * pStep;///Pointed to the next 

deduction step framework node. 

struct STRUCT_GENERAL_FRAME_INTERFACE * pTNext;///Pointed to the 

next framework node when the function returned “true”. 

struct STRUCT_GENERAL_FRAME_INTERFACE * pFNext;///Pointed to the 

next framework node when the function returned “fslse”. 

struct STRUCT_GENERAL_FRAME_INTERFACE * pSon;///Pointed to the first 

son framework node. 

struct STRUCT_GENERAL_FRAME_INTERFACE * pFather;///Pointed to the 

parent framework node. 

struct STRUCT_FUNTION_ENTRANCE * fun_init;/// Initialized the logic 

branch variables. 

struct STRUCT-FUNTION-INTRANCE * fun_execute_body;///Logic branch 

function body. 

struct STRUCT-FUNTION-INTRANCE * fun_rtn;///Logic branch function body 

returned values passing function. 

Boolean (*is_result_ validated) ();  

///Function pointer for result validation. 

Boolean (*Record_Input_Data) ();  

///Function pointer for input data recording function. 

Boolean (*Record_Output_Data) ();  

///Function pointer for recording output results. 

Boolean (*Record_Output_Format_Return) ();  

///Function pointer for unified output format function. 

}; 

4.2. Structure comparison algorithm 

The like-C language Algorithm 1 could be represented as follows: 
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Algorithm 1 Structure comparison algorithm 

1: Input: New module function feature string FString, new module input data feature string DString; The static logic 

structure web of the new module MWeb, the static logic structure web of the software SWeb and current node pointer 

pNode; the features base of software nodes FBase; Feature vocabularies base FVBase. 

2: Output: The module locations of different static logic structures MLocset. 

3: Algorithm description: structure_comparison_algorithm(). 

4: (1) pNode <= SWeb; /// compare from the head node of SWeb. 

5: (2) IF (!is_similar_modules(MWeb, FString, DString, pNode, SWeb, FBase, FVBase)) THEN RETURE FALSE; /// if 

new module node has not similar node in SWeb, return failure. 

6: (3) pNode <=  pNode->Son; /// current node changes to its Son node. 

7: (4) IF (!is_similar_son_nodes(MWeb, FString, DString, pNode, SWeb, FBase, FVBase)) THEN RETURE FALSE; /// if 

new module node has not similar Son node with current location of SWeb, return failure. 

8: (5) pNode <=  pNode->TNext; /// current node changes to its TNext node. 

9: (6) IF (!is_similar_tnext_nodes(MWeb, FString, DString, pNode, SWeb, FBase, FVBase)) THEN RETURE FALSE; /// if 

new module node has not similar TNext node with current location of SWeb, return failure. 

10: (7) pNode <=  pNode->FNext; /// current node changes to its FNext node. 

11: (8) IF (!is_similar_fnext_nodes(MWeb, FString, DString, pNode, SWeb, FBase, FVBase)) THEN RETURE FALSE; /// if 

new module node has not similar FNext node with current location of SWeb, return failure. 

4.3. Nodes scheduling algorithm 

Each node G function part could be composed of the initialization part G.Init, the 

body part G.Body, and the return part G.Retn. If node G contained the child node I, 

then the execution sequence of node G was G.Init → I.Init → I.Body→ I.Retn → 

G.Retn; the G.Body actually did not execute. The like-C language  Algorithm 2 could 

be represented as follows: 

Algorithm 2 Nodes scheduling algorithm 

1: Input: The static logic structure web of the software SWeb and current node pointer pNode. 

2: Output: The problem solution, middle steps and middle results. 

3: Algorithm description: nodes_scheduling_algorithm(). 

4: (1) assign_nodes_depth(pNode, SWeb) /// assigns the Son relation depth for each nodes. 

5: (2) IF(is_current_general_node(pNode)) THEN 

6:  IF(!is_has_son(pNode))THEN 

7:   pNode->Init(); bRet = pNode->Body(); pNode->Retn(); 

8:   IF(bRet && is_has_TNext(pNode)) THEN 

9:    align_return_depth(); 

10:    pNode <=  pNode->TNext; 

11:    GOTO (2); 

12:   IF((!bRet)&&( is_has_FNext(pNode))) THEN 

13:    align_return_depth(); 

14:    pNode <=  pNode->FNext; 

15:    GOTO (2); 

16:  ELSE /// is_has_son(pNode) 

17:   pNode->Init(); pNode <=  pNode->Son; 

18: (3) IF(is_current_embed_node(pNode)) THEN 

19:  IF(!is_has_son(pNode))THEN 

20:   IF(b_first_run_flag(pNode)) THEN 

21:     pNode->Init(); 

22:   bRet = pNode->Body(); 

23:   IF(bRet && is_has_TNext(pNode)) THEN 

24:    align_return_depth(); 

25:    pNode <=  pNode->TNext;/// GOTO (3); 

26:    GOTO (2); 

27:   IF((!bRet)&&( is_has_FNext(pNode))) THEN 

28:    b_first_run_flag(pNode) <=  FALSE; 

29:    align_return_depth(); 
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Algorithm 2 (Continued) 

30:    pNode <=  pNode->FNext; 

31:    GOTO (2); 

32:  ELSE /// is_has_son(pNode) 

33:   pNode->Init(); pNode <=  pNode->Son; 

34: (4) IF(is_current_lpbn_node(pNode)) THEN/// loop head node 

35:  IF(b_first_run_flag(pNode)) THEN 

36:    pNode->Init(); 

37:  bRet = pNode->Body(); 

38:  IF(bRet && is_has_TNext(pNode)) THEN 

39:   align_return_depth(); 

40:   pNode <=  pNode->TNext;/// GOTO (4); 

41:   GOTO (2); 

42:  IF((!bRet)&&( is_has_FNext(pNode))) THEN 

43:   b_first_run_flag(pNode) <=  FALSE; 

44:   pNode <=  pNode->FNext; 

45:   GOTO (2); 

46: (5) IF(is_current_lptl_node(pNode)) THEN /// loop tail node 

47:  pNode->Init(); pNode->Body(); pNode->Retn(); 

48:  GOTO (4); 

4.4. Action planning algorithm 

All thinking actions (condition nodes, function nodes, recursive nodes, loop 

(head) nodes, and loop (tail) nodes) and their sequence fragments were evaluated step 

by step at the current time, and the optimal action sequence was selected to execute. 

Machine implementation for the progressive program logic (node sequence) 

determination was very difficult. Therefore, this article used hook function and 

callback function mechanisms to pre-set templates and later determined the method to 

refine the planning of thinking action sequences. The like-C language Algorithm 3 

could be represented as follows: 

Algorithm 3 Action planning algorithm 

1: Input: thinking actions set ActionSet, candidate thinking actions queue CandActionQueue. 

2: Output: candidate thinking action T, current system state S, problem results. 

3: Algorithm description: actions_planning_algorithm(). 

4: (1) CandActionQueue <= is_can_activate(ActionSet, S) ///push the thinking actions that can be activated in current 

state into CandActionQueue. 

5: (2) T <= select_optimal_action(CandActionQueue) /// select the optimal thinking action in current system state. 

6: (3) S’ <= exec_action(T); /// execute the selected action, record the output data to new system state. 

7: (4) IF (is_problem_solved(S’)) THEN RETURN TRUE; /// if problem was solved, then return successfully. 

8: (5) ELSE S <= S’; GOTO (1). /// if problem was not solved, update system state, jump to step (1). 

4.5. State perception objects 

State perception objects included the input data, middle result structure, and 

attribute features; common sense judgment for thinking action results; historical data 

features and the trends for the results; current system state features; thinking modes; 

human-machine interaction for verifying results; and rules induction for the input data, 

etc. 

4.6. Thinking knowledge base 

The thinking operating system was built on the aggregation of a large amount of 

commonsense knowledge and commonsense features. The thinking knowledge base 
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could usually contain various static data and formal semantic features of thinking 

functions, as well as dynamic historical evolution features and semantic features of 

data and actions. The knowledge base provided all the basic thinking actions and 

mechanisms for the thinking operating system. Except for a small number of creative 

thinking scenes that required human-computer interaction (which would become less 

and less necessary as the knowledge base and meta-knowledge converge), other main 

thinking functions could achieve autonomous closed-loop operation through pattern 

matching or basic working mode combination. At present, the knowledge base is still 

designed, built, and maintained entirely manually. The semi-automatic construction 

system with manual assistance and the automatic construction system with self-

inducing hypothesis verification are already in the requirements demonstration stage. 

However, due to the complexity of this issue and the involvement of human-machine 

interaction dynamic updates, there are currently no specific techniques that contribute 

to the industry. 

This section summarized the basic concepts of the thinking operating system, 

introduced the execution environment of thinking actions based on the function pointer 

framework, explained the core functions of the thinking operating system using 

several algorithms, the static data feature perception, and the construct of the thinking 

knowledge base. 

5. Key application technologies 

5.1. Autonomous enumerating input data features and inducting action 

laws 

It is impossible to exhaustively enumerate data patterns, so it is necessary to 

generalize patterns, as well as extend the ability to process patterns. For example, the 

initial input vocabulary sequence “...S1...R1...”, where S1 was the source phrase 

(vocabulary sequence fragment), R1 was the referential phrase (vocabulary sequence 

fragment), and the action should replace the referential phrase with the source phrase 

to obtain the vocabulary sequence “...S1...S1...”. In order to generalize the processing 

ability of language referential phenomena, the thinking operating systems needed to 

have the ability to autonomously enumerate and interact with humans to obtain the 

following extended input vocabulary sequences and their correct results for referential 

resolving: 

“......” (none referential phenomenon; there was no matched source phrase and 

reference phrase) 

“...S1...” (none referential phenomenon, but matching source phrase) 

“...R1...” (none referential phenomenon, but matching referential phrase) 

“...S1...R1...R1...” (There were referential phenomena, where two referential 

phrases should be replaced by the same source phrase) 

“...S1...S2...R2...” (There was a referential phenomenon; the reference phrase 

should be replaced by the adjacent source phrase that appeared earlier) 

“...S1...R1...S2...R2...” (There were referential phenomena, where both reference 

phrases should be replaced by their adjacent source phrases that appeared earlier) 

… 



AI Insights 2025, 1(1), 1973. 
 

12 

Sometimes, humans also could not master the real laws with limited input 

patterns. Thus, the thinking operating system could enumerate input patterns and 

inquire with humans for process actions, then retrieve the action base and generalize 

action sequences based on reference features, such as replacing with the first appearing 

source phrase, replacing with the forward adjacent source phrase, or replacing with 

the last appearing source phrase. Finally, new knowledge was obtained through 

human-machine interaction learning; that is, the vocabulary pattern reference 

phenomena could be resolved by forward adjacent vocabulary phrase substitutions. 

5.2. Rollback action 

Every thinking action’s result must be verified and judged by common sense 

knowledge. For example, the numbers of people, trees, and machines only have integer 

values, and if the derived results were decimals, then it could be concluded that there 

were errors. The operating system should activate the rollback mechanism to rethink. 

There was still a lot of common sense like this, such as, within the scope of elementary 

mathematics, all data element variables could not be assigned negative values; the 

divisor could not be zero; the airplane speed was usually faster than a train and a car. 

The accumulation and access of common sense were both implemented by the 

thinking operating system. The results obtained from human-computer interaction 

could also be supervised learning through common sense rollback. Variables without 

initial values could not participate in calculations, or empty address structure pointer’s 

elements could not be accessed during program execution. They were also common 

knowledge to activate rollback action. 

The thinking action function nodes were all designed as function pointer 

frameworks (including initialization module pointer, function body pointer, and return 

module pointers), with clear logic meaning for output results. The thinking operating 

system could add a “callback function” to the return function to execute a 

commonsense judgment function. Because the thinking action call was designed as a 

deep traversal chain with historical records, the chain has father node pointers and 

brother node pointers, so the “error rollback” could be achieved. For example, there 

were function nodes 1–7; the current software execution workflow was illustrated as 

follows in Figure 3:  

 
Figure 3. Dynamic node execution workflow. 
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At the initial stage, function nodes 1, 3, and 4 satisfied the action activation 

conditions and were linked by brother pointers; after function node 1 was executed, 

function nodes 2, 3, 4, and 5 satisfied the action activation conditions and were also 

linked by brother pointers. When function node 2 failed, execute function node 3 

according to the brother pointer of function node 2. If a function node failed and its 

brother pointer was NULL, then execute the brother node of its father node. 

5.3. Error self-healing 

At each step of the thinking process, the operating system recorded all possible 

reasoning and computing actions, selected the most likely appropriate action to 

execute, and if commonsense judgment was abnormal at this time, it took the rollback 

action and selected the next appropriate action to execute... If all possible actions that 

could be executed by the previous level node failed, it continued to roll back according 

to the above idea until the system obtained the right answer or all possible action paths 

failed. The self-healing implementation mechanism was similar to error rollback and 

would not be elaborated on in this article. 

5.4. Online self-programming 

The thinking actions were virtually served in the form of callback functions, and 

the function entities were dynamically called in the form of dynamic link libraries 

(DLL). All predicted access function entities were queued head-to-end. Dynamically 

accessing function entities during the execution of the main function enabled online 

access to unknown function entities that satisfied callback function parameters. The 

continuous evolution of thinking could be realized in this closed-loop queue. 

5.5. Generalized pattern matching 

The processing capability of thinking operating systems was generalized to cover 

all language expression patterns by templates (attributes pattern matching such as data 

elements, parts of speech, person names, place names, institution names, association 

patterns, commonsense knowledge reasoning, as well as thinking modes such as 

exploration, enumeration, hypothesis, prediction, deduction, and induction, etc.). The 

coverage of all executable actions by pre-set bases and the resolution of synonyms and 

referents were also important ways of language expression generalization. The trend 

deduction of pattern matching was a generalized way of enumerating thinking actions. 

5.6. Experiment analysis 

The demo system had been developed for 5 years, and more than 1100 math 

application problems of different difficulty levels were debugged, such as general 

math problems and Olympic math problems. The system knowledge base stored pre 

annotated 2920 clause semantic frameworks, 352 global semantic frameworks, 153 

mathematic knowledge item, 180 general mathematic attribute items, 67 commonly 

used formulas, and 134 resolving rules, as well as preset data such as dictionaries, 

concept membership relationship knowledge graphs, concept attribute relationship 

knowledge graphs, scene synonym lists, concept reference patterns and scene 

reference patterns, segmentation vocabulary sequence correction and segmentation 
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pattern correction relationship tables, part of speech vocabulary sequence correction 

and part of speech pattern correction relationship tables, problem semantic component 

patterns and corresponding variable retrieval patterns, equivalence association 

patterns, logic thinking commonsense databases, feature constraint tables, semantic 

component meta frameworks and corresponding meta framework retrieval patterns, 

named entity examples, time representation examples, etc. The semantic annotation 

and debugging of general math problems took an average of 1–3 h; the semantic 

annotation and debugging of Olympiad math problems took an average of 2–3 days. 

The number of general calculation formulas and conditional formulas in the general 

math problem release mode of the demo system was generally less than 100, and the 

average executing time for single machine resolving was 20–30 min. The number of 

general calculation formulas and conditional formulas in the Olympic math problem 

release mode was generally between hundreds and thousands, and the average 

executing time for single machine resolving was 24–36 h. At present, the logic flows 

of the demo system are very complex; the efficiencies of debugging and executing are 

far lower than the requirements of engineering development, so it is urgent to use the 

thinking operating system for standardized development, debugging, and 

maintenance. 

This section explained several key application technologies such as feature 

enumeration, action rollback, error self-healing, online programming, and pattern 

generalization, as well as an experiment analysis of the demo system. 

6. Conclusion 

Although scholars had proposed some meaningful human cognitive architectures 

internationally, e.g., ACT-R [61,62] and SOAR [63], the implementations for specific 

engineering problems were still not satisfactory. This article had developed a 

prototype of the interpretable thinking operation system based on semantic pattern 

matching and a finite set of thinking actions (including basic thinking actions such as 

addition, subtraction, multiplication, division, taking absolute values, calculating area, 

calculating perimeter, rollback, etc.). It could display the semantic understanding and 

analyzing processes, software static module structure, and software dynamic execution 

process and could serve as the basic platform for in-depth research. The difficulty in 

implementing the thinking operating system lay in the gradual acquisition of sufficient 

think action samples through human-computer interaction, as well as the activation 

and result verification mechanisms of thinking patterns such as backtracking, probing, 

enumeration, prediction, and hypothesis. This article elaborated on the key factors and 

solutions faced by the development of thinking operating systems from different 

perspectives.  

There are many research directions for the expansion of this article. In the future, 

based on this prototype, we would research and develop an online continuous learning 

system for commonsense based on Internet information and build a series of special 

knowledge bases for machine thinking (knowledge maps such as concept membership, 

coordinating relationship, attribute relationship, etc.); We would perform 

mathematical, conceptual, or logical induction on the information in the initial 

knowledge base, propose hypotheses, validate, and update the knowledge base through 
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continuous learning; we also planned to explore the mechanism of deep thinking 

(including the derivation of mathematical symbol systems) and upgrade the thinking 

control mechanism in the prototype; we would showcase this new programming 

approach for complex logic algorithms by designing and developing the independent 

action planning engine and the commonsense knowledge bases. Due to the small scale 

of the demo system data and the successful validation of the core algorithms a moment 

ago, this article condensed the common functions into the operating system, with the 

main design goal of reducing the complexity of system logic updating and the 

convenience of system maintenance. Maintaining efficient system operation in large-

scale data and complex tasks faced by future application systems was discussed in 

another article [64]. 
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